Годфри Харди

Апология математика

Godfrey Harold Hardy. A Mathematician’s Apology

Об оправдании своей деятельности

Хорошая работа делается отнюдь не «скромными» людьми. Одна из важнейших обязанностей профессора, преподающего любой предмет, состоит в том, чтобы немного преувеличить важность своего предмета и своего участия в его развитии. Человек, постоянно задающий вопросы «Стоит ли заниматься тем, что я делаю?» и «Тот ли я человек, который справится с этим делом?» всегда будет неэффективен и к тому же будет расхолаживать других. Он должен слегка прикрыть глаза и думать о своём предмете и самом себе немного лучше, чем они того заслуживают. Сделать это не слишком трудно: труднее не выставить свой предмет и себя на посмешище, зажмурившись слишком плотно.

Человеку, решившему оправдать своё существование и свою деятельность, необходимо различать два несхожих по существу вопроса. Первый вопрос состоит в том, стоит ли заниматься тем, чем он занимается; второй — в том, почему он этим занимается (какова бы ни была ценность того, чем он занимается).

Карточка 96

О признаках серьезных математических теорем

Под «серьёзной» принято понимать теорему, содержащую «значительные» идеи. Мне кажется, что нужно попытаться провести более подробный анализ тех качеств, которые делают математическую идею значительной. Сделать это очень трудно, и маловероятно, что проводимый мной анализ окажется очень ценным. Мы узнаем «значительную» идею, когда нам случается её видеть, как мы узнали значительные идеи в приведённых выше теоремах Евклида и Пифагора, но способность распознать важное требует весьма высокой степени математической мудрости и знания математических идей, которое берётся только от многолетнего пребывания в их компании. Поэтому я всё же попытаюсь проанализировать в какой-то мере «серьёзности» математической идеи и сделать анализ при всей его неадекватности разумным и понятным насколько это возможно. Два качества играют существенную роль: общность и глубина идеи, но ни одно из них не поддаётся определению легко и просто.

Значительная математическая идея, серьёзная математическая теорема должна обладать «общностью» в каком-то следующем смысле. Идея должна быть составляющей частью многих математических конструкций, используемых в доказательствах многих теорем различного рода. Теорема должна быть такой, что даже если первоначально она сформулирована в весьма частном виде (как теорема Пифагора), она должна допускать существенное обобщение и быть типичной для целого класса теорем аналогичного рода. Отношения, выявляемые в ходе её доказательства, должны связывать многие различные математические идеи. Всё это очень смутно и требует многочисленных уточнений. Но, как нетрудно видеть, теорема вряд ли может претендовать на роль серьёзной теоремы, если в ней явно недостаточно этих свойств. Нам остаётся только привести примеры отдельных курьезов, которые во множестве встречаются в арифметике. Приведу, два примера, заимствованных мной почти наугад из книги «Математические эссе и развлечения» Роуза Болла и Коксетера.

(а) 8712 и 9801 единственные четырёхзначные числа, равные целым кратным числам, полученным при записи в обратном порядке:

8712 = 4 · 2178, 9801 = 9 · 1089.

Других чисел, не превосходящих 10000, которые бы обладали этим свойством, не существует.

(б) Существуют только четыре числа (кроме 1), равных сумме кубов цифр, например,

153=13+53+33,

370=33+73+03,

371=33+73+13,

407=43+03+73.

Все это забавные факты, весьма подходящие для газетных колонок с головоломками, способные позабавить любителей, но ничего в них не затронет сердце математика. Их доказательства не трудны и не интересны, а всего лишь немного утомительны. Соответствующие утверждения, как теоремы, не серьёзны. Ясно, что одна из причин этого (хотя, вероятно, не самая важная) — чрезмерная конкретность как формулировок, так и доказательств, не допускающих никаких обобщений.

Карточка 97

Про разницу чистой и прикладной математики

Контраст между чистой и прикладной математикой выступает, по-видимому, с наибольшей ясностью в геометрии. Существует наука чистой геометрии, включающая в себя многочисленные геометрии: проективную, евклидову, неевклидову[, «аналитическую»] и т. д. Каждая из этих геометрий переставляет собой модель, образ из идей, и судить о ней следует по интересу и красоте её индивидуального «образа». Это карта или картина, совместный продукт многих рук, частичная и несовершенная (но тем не менее точная на всём своём протяжении) копия фрагмента математической реальности. Но для нас сейчас важно то, что есть нечто такое, по отношению к чему чистые геометрии не являются картинами, а именно: пространственно-временная реальность физического мира. В том, что чистые геометрии не могут быть картинами реальности, нет ни малейшего сомнения, так как землетрясения и затмения не принадлежат к числу математических концепций.

Для постороннего человека это звучит несколько парадоксально, но для геометрии это — труизм. Возможно, я смогу пояснить свою мысль на примере: предположим, что я читаю лекцию по одной из систем геометрии, например, по обычной евклидовой геометрии, и рисую на доске фигуры, чтобы стимулировать воображение моей аудитории, — грубые чертежи из прямых, окружностей или эллипсов. Ясно, что истинность доказываемых мной теорем не зависит от качества моих чертежей. Их функция состоит лишь в том, чтобы донести до моих слушателей то, что я имею в виду, и если я смогу это сделать, то не будет пользы от того, что их перерисует искусный чертёжник. Мои чертежи выполняют вспомогательную педагогическую функцию и не являются тем, что составляет предмет моей лекции.

Сделаем ещё один шаг. Помещение, в котором я читаю лекцию, составляет часть физического мира и само обладает определённым образом. Изучение этого образа и общего образа физической реальности само по себе является наукой, которую можно назвать «физической геометрией». Предположим теперь, что в аудиторию поместили мощную динамомашину или массивное гравитирующее тело. Физики скажут нам, что геометрия помещения изменилась, что весь его физический образ немного, но совершенно определённо исказился. Стали ли ложными теоремы, которые я доказал. Ясно, что было бы глупо ожидать, будто на доказательствах теорем, которые я приводил на лекции, каким-то образом сказалось наличие в аудитории динамомашины или гравитирующего тела. Это аналогично предположению о том, что пьеса Шекспира изменилась от того, что некий читатель пролил на страницу чай. Пьеса не зависит от страниц, на которых она напечатана, и «чистые геометрии» не зависят от комнаты, в которой читается лекция или от любых других деталей физического мира.

Такова точка зрения чистого математика. Естественно, что прикладные математики, математические физики придерживаются другой точки зрения, так как они имеют дело с самим физическим миром, который также обладает своей структурой, или образом. Мы не можем дать точное описание этого образа, как в случае чистой геометрии, но можем сказать о нём нечто важное. Мы можем описать, иногда с достаточной точностью, иногда — лишь в общих чертах, отношения между некоторыми составляющими структуры физического мира и сравнить их с точными отношениями между составляющими какой-нибудь системы чистой геометрии. Мы можем уловить некоторые сходства между двумя наборами отношений, и тогда чистая геометрия обретает интерес для физиков. В этом случае мы получаем карту, согласующуюся с фактами физического мира. Геометр предлагает физику целый набор карт на выбор. Возможно, что одна карта будет лучше соответствовать фактам, чем другие. В этом случае геометрия, порождающая лучшую карту, окажется геометрией, наиболее важной для прикладной математики. Можно добавить, что оценка такой геометрии даже со стороны чистого математика может повыситься, так как нет математика настолько чистого, чтобы он был напрочь лишен интереса к физическому миру, но в той мере, в какой он уступит этому искушению, он утратит свою позицию чистого математика.

Карточка 98

О контакте математиков и физиков с реальностью

Есть ещё одно замечание, которое напрашивается в этой связи. Физикам оно может показаться парадоксальным, хотя в настоящее время парадокс выглядит менее удивительным, чем восемнадцать лет назад. Я приведу его почти в тех же словах, в каких он был сформулирован в моём докладе на секции А Британской ассоциации. Моя аудитория почти целиком состояла из физиков, и поэтому вполне возможно, что моя речь была несколько провокационной. Впрочем, что касается её содержания, то я и сейчас целиком разделяю высказанную тогда позицию.

Я начал с утверждения о том, что различия между позициями математика и физика меньше, чем обычно принято думать. Самое важное заключается в том, что математик контактирует с действительностью гораздо ближе, чем физик. Такое утверждение может показаться парадоксом, так как именно физика, изучающего материальные предметы и явления, обычно принято называть «реалистом». Но достаточно немного поразмыслить, чтобы понять, что физическая реальность, какой бы она ни была, обладает весьма немногими атрибутами (если обладает ими вообще), которые здравый смысл интенсивно приписывает реальности. Стул может быть набором обращающихся вокруг ядер электронов или идеей в уме Господа Бога — каждое из этих описаний, возможно, обладает своими достоинствами, но ни одно из них не соответствует представлениям здравого смысла.

Далее я заметил, что ни физики, ни философы не дали сколько-нибудь убедительного описания «физической реальности» или того, как физик переходит от запутанной массы фактов или ощущений, с которой он начинает, к конструкции тех объектов, которые физик называет «реальными». Например, мы не можем сказать, будто бы нам известно, что такое физика, но это отнюдь не должно мешать нам понимать в общих чертах, что именно пытается делать физик. Ясно, что физик пытается скооперировать разрозненную массу сырых фактов, с которыми он сталкивается, имея в своём распоряжении некоторую определённую упорядоченную схему абстрактных отношений — ту разновидность схемы, которую физик может позаимствовать только из математики.

С другой стороны, математик имеет дело со своей собственной математической реальностью. Как было объяснено [ранее], я предпочитаю «реалистическую», а не «идеалистическую» точку зрения на математическую реальность. Во всяком случае (и в этом состоял мой главный тезис), такая реалистическая точка зрения на математическую реальность гораздо более правдоподобна, чем на физическую реальность потому, что математические объекты в гораздо большей степени таковы, какими они кажутся. Стул или звезда ничуть не похожи на то, чем они кажутся; чем больше мы думаем об этом, тем более расплывчатыми становятся их очертания в мареве окружающих их ощущений; но «2» или «317» не имеют никакого отношения к ощущениям, и свойства числа выступают тем более отчётливо, чем пристальнее мы его рассматриваем. Возможно, что современная физика лучше всего укладывается в рамки идеалистической философии. Лично я в это не верю, но так говорят некоторые выдающиеся физики. С другой стороны, чистая математика представляется мне скалой, на которой зиждется идеализм: число 317 простое не потому, что мы думаем так, и не потому, что наш разум устроен так, а не иначе, а потому, что это так, потому, что математическая реальность устроена так.

Карточка 99

О смысле жизни невыдающегося математика

[…] Я написал много работ, но очень мало из них имели хотя бы какое-то значение: лишь четыре или пять из них я всё ещё могу вспомнить с некоторым удовлетворением. Настоящий перелом в моей карьере наступил дважды: через десять или двенадцать лет — в 1911 году, когда я начал продолжительное сотрудничество с Литлвудом, и в 1913 году, когда я открыл Рамануджана. С тех пор все мои лучшие работы были связаны с их работами, и не подлежит сомнению, что моё сотрудничество с ними стало решающим событием моей жизни. Я и сейчас говорю себе, когда мне приходится выслушивать помпезных докучливых людей: «А всё-таки мне удалось сделать одну вещь, которую ни за что не удастся сделать вам: я сотрудничал с Литлвудом и Рамануджаном на равных». Именно им, Литлвуду и Рамануджану, я обязан необычно поздней зрелостью: мой расцвет как математика произошёл, когда мне было слегка за сорок и я был профессором в Оксфорде. Затем наступила фаза всё большего угасания — обычная судьба престарелых людей, в особенности престарелых математиков. В шестьдесят лет математик может оставаться вполне компетентным, но бесполезно ожидать от него оригинальных идей.

Карточка 101

Книга добавлена 27 апреля 2016 под номером 78